ROOTPLOIT
Server: LiteSpeed
System: Linux in-mum-web1878.main-hosting.eu 5.14.0-570.21.1.el9_6.x86_64 #1 SMP PREEMPT_DYNAMIC Wed Jun 11 07:22:35 EDT 2025 x86_64
User: u435929562 (435929562)
PHP: 7.4.33
Disabled: system, exec, shell_exec, passthru, mysql_list_dbs, ini_alter, dl, symlink, link, chgrp, leak, popen, apache_child_terminate, virtual, mb_send_mail
Upload Files
File: //opt/golang/1.22.0/src/cmd/vendor/golang.org/x/tools/go/analysis/passes/stringintconv/string.go
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package stringintconv

import (
	_ "embed"
	"fmt"
	"go/ast"
	"go/types"
	"strings"

	"golang.org/x/tools/go/analysis"
	"golang.org/x/tools/go/analysis/passes/inspect"
	"golang.org/x/tools/go/analysis/passes/internal/analysisutil"
	"golang.org/x/tools/go/ast/inspector"
	"golang.org/x/tools/internal/typeparams"
)

//go:embed doc.go
var doc string

var Analyzer = &analysis.Analyzer{
	Name:     "stringintconv",
	Doc:      analysisutil.MustExtractDoc(doc, "stringintconv"),
	URL:      "https://pkg.go.dev/golang.org/x/tools/go/analysis/passes/stringintconv",
	Requires: []*analysis.Analyzer{inspect.Analyzer},
	Run:      run,
}

// describe returns a string describing the type typ contained within the type
// set of inType. If non-empty, inName is used as the name of inType (this is
// necessary so that we can use alias type names that may not be reachable from
// inType itself).
func describe(typ, inType types.Type, inName string) string {
	name := inName
	if typ != inType {
		name = typeName(typ)
	}
	if name == "" {
		return ""
	}

	var parentheticals []string
	if underName := typeName(typ.Underlying()); underName != "" && underName != name {
		parentheticals = append(parentheticals, underName)
	}

	if typ != inType && inName != "" && inName != name {
		parentheticals = append(parentheticals, "in "+inName)
	}

	if len(parentheticals) > 0 {
		name += " (" + strings.Join(parentheticals, ", ") + ")"
	}

	return name
}

func typeName(typ types.Type) string {
	if v, _ := typ.(interface{ Name() string }); v != nil {
		return v.Name()
	}
	if v, _ := typ.(interface{ Obj() *types.TypeName }); v != nil {
		return v.Obj().Name()
	}
	return ""
}

func run(pass *analysis.Pass) (interface{}, error) {
	inspect := pass.ResultOf[inspect.Analyzer].(*inspector.Inspector)
	nodeFilter := []ast.Node{
		(*ast.CallExpr)(nil),
	}
	inspect.Preorder(nodeFilter, func(n ast.Node) {
		call := n.(*ast.CallExpr)

		if len(call.Args) != 1 {
			return
		}
		arg := call.Args[0]

		// Retrieve target type name.
		var tname *types.TypeName
		switch fun := call.Fun.(type) {
		case *ast.Ident:
			tname, _ = pass.TypesInfo.Uses[fun].(*types.TypeName)
		case *ast.SelectorExpr:
			tname, _ = pass.TypesInfo.Uses[fun.Sel].(*types.TypeName)
		}
		if tname == nil {
			return
		}

		// In the conversion T(v) of a value v of type V to a target type T, we
		// look for types T0 in the type set of T and V0 in the type set of V, such
		// that V0->T0 is a problematic conversion. If T and V are not type
		// parameters, this amounts to just checking if V->T is a problematic
		// conversion.

		// First, find a type T0 in T that has an underlying type of string.
		T := tname.Type()
		ttypes, err := structuralTypes(T)
		if err != nil {
			return // invalid type
		}

		var T0 types.Type // string type in the type set of T

		for _, tt := range ttypes {
			u, _ := tt.Underlying().(*types.Basic)
			if u != nil && u.Kind() == types.String {
				T0 = tt
				break
			}
		}

		if T0 == nil {
			// No target types have an underlying type of string.
			return
		}

		// Next, find a type V0 in V that has an underlying integral type that is
		// not byte or rune.
		V := pass.TypesInfo.TypeOf(arg)
		vtypes, err := structuralTypes(V)
		if err != nil {
			return // invalid type
		}

		var V0 types.Type // integral type in the type set of V

		for _, vt := range vtypes {
			u, _ := vt.Underlying().(*types.Basic)
			if u != nil && u.Info()&types.IsInteger != 0 {
				switch u.Kind() {
				case types.Byte, types.Rune, types.UntypedRune:
					continue
				}
				V0 = vt
				break
			}
		}

		if V0 == nil {
			// No source types are non-byte or rune integer types.
			return
		}

		convertibleToRune := true // if true, we can suggest a fix
		for _, t := range vtypes {
			if !types.ConvertibleTo(t, types.Typ[types.Rune]) {
				convertibleToRune = false
				break
			}
		}

		target := describe(T0, T, tname.Name())
		source := describe(V0, V, typeName(V))

		if target == "" || source == "" {
			return // something went wrong
		}

		diag := analysis.Diagnostic{
			Pos:     n.Pos(),
			Message: fmt.Sprintf("conversion from %s to %s yields a string of one rune, not a string of digits (did you mean fmt.Sprint(x)?)", source, target),
		}

		if convertibleToRune {
			diag.SuggestedFixes = []analysis.SuggestedFix{
				{
					Message: "Did you mean to convert a rune to a string?",
					TextEdits: []analysis.TextEdit{
						{
							Pos:     arg.Pos(),
							End:     arg.Pos(),
							NewText: []byte("rune("),
						},
						{
							Pos:     arg.End(),
							End:     arg.End(),
							NewText: []byte(")"),
						},
					},
				},
			}
		}
		pass.Report(diag)
	})
	return nil, nil
}

func structuralTypes(t types.Type) ([]types.Type, error) {
	var structuralTypes []types.Type
	switch t := t.(type) {
	case *types.TypeParam:
		terms, err := typeparams.StructuralTerms(t)
		if err != nil {
			return nil, err
		}
		for _, term := range terms {
			structuralTypes = append(structuralTypes, term.Type())
		}
	default:
		structuralTypes = append(structuralTypes, t)
	}
	return structuralTypes, nil
}